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Tangent cohomology of a commutative algebra is known to have the structure of a graded Lie 

algebra; we account for this by exhibiting a differential graded Lie algebra (in fact, two of them) 

equivalent as cochain complex to Harrison’s yielding the tangent cohomology. This d.g. Lie 

algebra, called the tangent Lie algebra, also provides an interpretation of the cohomology in 

terms of perturbations of multiplicative resolutions and hence clarifies the relation to deforma- 

tion theory. In particular, the higher order obstructions to deformations appear as Massey-Lie 

brackets. Moreover, we obtain homological constructions for the base and total spaces of a versa1 

deformation. 

Introduction 

Harrison cohomology [5, 19621 for commutative algebras was defined as the 

analog of Hochschild cohomology for associative algebras. One of its most impor- 

tant applications is in the deformation theory of commutative algebras, where essen- 

tial invariants belong to the Harrison groups H’(A, A) for i= 1,2,3 [4, 19681. 

These groups also appeared as the cohomology of the ‘cotangent complex’ of 

Lichtenbaum and Schlessinger [6, 19671 and, in characteristic zero, as the An- 

drt-Quillen cohomology groups [2], [lo]. We refer to this cohomology simply as the 
tangent cohomoiogy of the algebra. 

In Gerstenhaber’s work and that of Nijenhuis [S], Harrison’s cohomology 

(regraded) exhibits the structure of a graded Lie algebra but in rather ad hoc ways, 

not as the homology of a differential graded Lie algebra (d.g.1.). The same is true 

of AndrC’s construction [l] of the bracket, although Andre does use a method that 

is independent of the resolution in question of the algebra A. 

Our main goal in this paper is to present Harrison (and And&-Quillen) 

cohomology in characteristic zero as the homology of a natural d.g. Lie algebra 

associated to the augmented commutative algebra A, thus elucidating the d.g. Lie 

structure of the cohomology. This also substantiates the existence of Massey-Lie 
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brackets in the cohomology, and we show the relevance of these cohomologies to 

the deformation theory of commutative algebras in a way that brings out the 

relevance of the Massey-Lie brackets, 

Our basic point of view is that of multiplicative resolutions of the algebra A, i.e. 

a differential graded commutative algebra (c.d.g.a.) .&together with a morphism of 

algebras d + A inducing H(.B!) = A. If d is free as a c.g.a., we call d + A a model. 

For such resolutions, the deformations of A correspond to changes in the differen- 

tial of d; thus we were led to consider Derd, the Lie algebra of graded derivations 

of d. The original differential on .d induces one on Der d, making it a differential 

graded Lie algebra. The invariant analysis of deformation theory takes place conve- 

niently in the tangent cohomology T(A) = H (Der JJ) although the homotopy type 

of Der .d as d.g.1. is the true underlying invariant (cf. Palamodov [9] in the analytic 

case). 

For comparison, Quillen considers only Der(&, A) the relative derivations of .d in- 

to A regarding A as an &-algebra via the original equivalence &+A. This fails to 

capture the Lie algebra structure, which is very important in the obstruction theory. 

On the homology level, Der ~8 and Der(& A) agree and the latter homology was 

known to agree with the cohomology for commutative algebras constructed by Har- 

rison [5]. We exhibit a particular model &+A which makes the comparison with 

Harrison quite transparent, however at the expense of considering (differential 

graded) Lie co-algebras. This turns out to be the natural setting for Harrison’s com- 

plex, which is precisely Hom(TA, A) where K4 is the free graded Lie coalgebra on 

the augmentation ideal of A considered to have degree 1. We then obtain a second 

computation for the tangent cohomology as the cohomology of the Lie algebra of 

‘outer derivations’ of the construction ZX; that is H(.sTA *#DerTA) = 7’(A). 

1. Algebras and coalgebras, commutative algebras and Lie coalgebras, resolutions 

and models 

We work over a fixed ground field k of characteristic zero. We assume familiarity 

with associative (unitary) graded algebras (A, m), i.e. A = (A”) with m: 

AP@AQ-tAP+q. We say A is commutative if m(x,y) =( - l)Pqm(y,x) for 

x E AP, y E Aq. A differential graded algebra (d.g.a.) (A, m, d) consists of a graded 
algebra (A, m) together with a graded differential d of degree which is derivation 

with to m, i.e. d: AP+Ap+’ with d2 = 0 and d(xy) = (dx)y + (- l)d’g”x(dy), 

or dm =m(d@ 1 + 1 @d) where the signs are built into the definition of f@g for 

graded maps f and g, (i.e. (f@g)(x@y) = (- I)(degg)(degx)f(x)@g(y)). 

Similarly we assume familiarity with the dual notion of associative (unitary) grad- 

ed coalgebra (C, A), i.e. C= (C,} with d : C, + C,+,=, Cp@ Cq. We say C is com- 

mutative if n = TA, where T(x@y) = (- l>pqy@x, where XE Cp and y E Cq. A dif- 

ferential graded coalgebra (d.g.c.) (C, d, d) consists of a graded coalgebra (C, d) 

together with a graded differential d of degree - 1 which is a coderivation with 

respect to A, i.e. d: C,+ C,_, with d2=0 and Ad=(d@ 1+ 1 @d)A. 
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Less familiar perhaps are the corresponding Lie notions. A graded Lie algebra 
(L, [., .I) consists of a graded module L = {L”} together with a bilinear map 
[., .];Lp@Lq+Lp+q such that for x E Lp and y E Lq: 

[x,Yl= -(-lY4LY,Xl, 

~~,~Y,~ll=~~~,Yl,~l+~-~)Pq~Y~~~~zll (the Jacobi identity). 

A graded Lie coalgebra (r, A) is a graded module I-= {I-,,} with a diagonal 

A :m- C,,+,=, &Or9 such that 

A= -TA, 

(l@A)A=(A@l)A+(T@l)(l@A)A. 

This can be summarized most succinctly and usefully by considering a suitable grad- 

ed commutative algebra generated by r, as we shall soon see. 

Free constructs. In each of the above categories, there exist free objects. Indeed any 

free graded k-module A4 gives rise to a corresponding free object satisfying the ap- 

propriate universal property in these categories. 

The tensor algebra T(M) = (MO”} = (MO... @M} with 

(al@... Oa,).(a,+r @... @a,)=(a,@... @a,) 

is the free (graded) associative algebra generated by M. 

The tensor coalgebra F(M) = {MO”} with 

A(a,@... @a,)= C (al@... @a,)0(a,+~@... @a,) 
p+CJ=tl 

is the free (graded) associative coalgebra cogenerated by TC (M) + A4 [7], at least if 

M is of finite type. 

The free Lie algebra L(M)C T(M) can best be described by considering T(M) as 

a Lie algebra with [x,y] =xoy-(-1) (deg x)(deg “y 0 x, where deg x = C deg x, for x = 

x,0... ox,, and similarly for y. Then L(M) is the smallest sub Lie algebra con- 

taining M. Alternatively, consider T(M) as a Hopf algebra primitively generated by 

M; i.e. Ax=x@ 1 + 1 @x for x~kf. This gives T(M) the shuffle diagonal 

A(a,@... @a,) 

where D being a shuffle means a(l)<a(2)< . . . <o(p) and o(p+ l)< . . . <a(n) and 

(- 1)” means the sign of the shuffle of the graded elements. The free Lie algebra 

L(M) is then the algebra of primitives P(T(M)), i.e. XE T(M) is primitive if and on- 

ly if Ax=x@ 1+ 1 Ox. 

The free Lie coalgebra can best be described as a quotient of TC(M)+ , where + 
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denotes the part of strictly positive @-degree. The tensor coalgebra P(M) can be 

given a Hopf algebra structure by using the shuffle multiplication, i.e. 

(a,@... @a,)*@,@... Ob,)= C(- 1)%(1@... oc,(p+q) 

where a-’ is a shuffle permutation as above and cl 0 . . . @ c,,+~ is just 

at@... @a,,@&@... 06,. The Lie coalgebra LC(M) consists of the indecom- 

posables. of this Hopf algebra, i.e. TC(M)+/TC(M)+ *TC(M)+ . Equivalently, 

L’(M) can be described as the quotient of TC(M) by the largest ideal in the kernel 

of T=M+M. 

2. Harrison’s cohomology as H(.CA *# Der TA) 

Let A be an augmented commutative algebra. Harrison [5] described his complex 

as follows: “Let E be an A-module. Let Tbe the tensor algebra (without the usual 

identity adjoined) of A. Then T with the shuffle product is a skew-commutative, 

graded algebra. Hom(T/T’, E) will turn out to be a complex with the usual co- 

boundary operator.” The ‘usual’ coboundary operator is Hochschild’s: 

For f: (T/T2),-+ E, the coboundary df: (T/T2)p+ 1 + E is given by 

p-1 

@f )(a,,, . . ., Up)= =U()f(U,ye-.,Up)+ C (-l)‘f(Uo,...,UiUi+,,...,Up) 
r=l 

+(- l)p~pf(ao,...,ap-J. 

With hindsight, we can recognize T/T2 as TA, the free Lie coalgebra on sA, 

where A is the augmentation ideal of A and (sA)~’ ’ = ?iP. To analyze Harrison’s 

construction further, consider that since TA is free as a Lie coalgebra over sA, we 

can lift each homomorphism TA +A to a coderivation a of TA; i.e., 

do= (a@ 1 + 1 @a)A, the signs being built into 1 @a! as usual. By abuse of nota- 

tion, we refer to DerTA, the graded co-derivations of TA. As graded k-modules, 

we then have 

Hom(TA,A)=DerTA. 

Since coderivations still compose via a bracket, Der TA is a d.g. Lie algebra and 

Gerstenhaber [4] has introduced a graded Lie bracket on Hom(TA, A). It is easy to 

check that the map to Der TA is a graded Lie map. 

This analysis can be extended to all of Hom(TA, A) by adapting a construction 

due to Quillen [ll] in a different context. As in [12], for any d.g. Lie coalgebra r, 

let L =Hom(r, k) as d.g. Lie algebra and let SL be the abelian Lie algebra with 

underlying vector space isomorphic to that of L with a shift in dimension. Define 

SL # Der r to be the d.g. Lie semi-direct product of the abelian d.g. Lie algebra SL 

with Der r which acts on SL in the obvious way: 

kf, 01 = w-“0) 
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while 

d(sf) = - sdf + ad f 

where adf is the coderivation of r defined by the composite 

I-%-@I- 
fQl -k@r=r. 

If &:A + k is an augmentation, i.e. ~(1) = 1, then E induces a splitting of k- 

modules: 

Hom(r’, A) = Hom(T’, k) @ Hom(C4, A) 

and thus we construct an isomorphism 

Hom(TA, A) + sLA # Der TA, where LA = Hom(TA, k). 

Gerstenhaber’s specific formulas for [. , .I on Hom(rA, A) correspond precisely to 

the Lie algebra structure on sLA#DerTA. Thus, as observed by Gerstenhaber, 

Harrison’s cohomology H(A, A) = H(sLA # Der TA) is a graded Lie algebra, except 

that Harrison’s grading is shifted by one since he counts only the @-grading, rather 

than the change in grading which is standard for Der. Finally we adopt the notation 

T(A) for this cohomology with the Lie algebra grading: T’(A) for i>O is 

represented by derivations of degree -i, i.e. determined by 8:2i@‘+’ -+A. We 

refer to T(A) as the tangent cohomology of A. 

3. Multiplicative resolutions 

A multiplicative resolution .d of a commutative algebra A is a differential graded 

commutative algebra (c.d.g.a.) .P/ together with a morphism of algebras .F/+ A in- 

ducing H(.d)-A. If .(i is free as a c.g.a., we call .d a model for A. 

The functor r( .) from commutative algebras to d.g. Lie coalgebras can be extend- 

ed to the category of c.d.g.a.‘s by incorporating dA with the Hochschild coboun- 

dary drA: by extending dA to TA as a coderivation with 

dA (sa) = - sdA a 

and adding it to d,, . 

An adjoint functor .d from d.g. Lie coalgebras to c.d.g.a.‘s can be constructed 

as an extension of Koszul’s complex for defining Lie algebra cohomology: 

Given a d.g. Lie coalgebra (r, d, d), define .c/(r) as the free commutative graded 

algebra Sym(s-‘r) on s-‘r(where s~i:P’==(s-~r)p-~). That is, 

Sym(s-‘r)= T(~-~r)/C={(s-lr)~"/~~} 

where the symmetric groups Z,, act with the graded permutation signs. The 

diagonal A : T-t r@ r passes to s- ’ T-t Sym2(sP ‘r) precisely because of the grad- 

ed anticommutativity and the Jacobi identity is equivalent to 
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s-9-d Syd(s-‘I-)~ Syd(s-T) 

being zero, d being extended as a derivation to all of Sym(s-‘r). The total dif- 

ferential D, is then d + d, where dr is the derivation determined by 

dr(sZ-) = - sd,l-. 

The adjunction .tirA -+ A is a particularly useful model for A. Folllowing the con- 

vention in rational homotopy theory, we refer to TA as a Lie model for A and 

.d’TA --f A as a (c.d.g.a.) model for A. 

For an augmented algebra A with trivial multiplication, i.e. m2=0 where 

m = ker E : A -+ k, the adjunction .drA -+ A is the Tate resolution of k over A, [13]. 

4. Formal deformation theory 

A formal one-parameter deformation of a commutative algebra A is a flat k[[t]]- 

algebra E such that E/tE=A, i.e. a flat extension 

k[[t]] --t E+ A. 

The deformation is trivial if, as algebras, E- k[[t]] @A. Choosing a basis {b;} for 

A, the multiplication in E can be described in terms of structural power series 

c;(t), i.e. bibj= C c,$(t)bk. Assuming we are over a field (or A is free as k- 

module), then as k[[t]]-modules, we already have E= k[[t]] @A; the twist is all in 

the multiplication. Thus to resolve E, we can use k[[t]]@& where .d is a 

multiplicative resolution of A, but with a differential D = 10 d,, + C ti@pi , where 

pi is a derivation of d of degree 1. The condition d = 0 implies a whole sequence 

of equations: 

dp, +p,d=O, 

@2+p2d+ptpt =O> 

etc. 

Thus, in particular, D determines an ‘infinitesimal tangent vector’ 8 = 

[p,] ~Hl(Der.$)= T’(A). 

Now we wish to start in H’(Der.d) and work back. Any class 19~H’(Derd) 

determines a flat extension A, over the dual numbers k[E] = k[t]/(t2). The obstruc- 

tion to extending A to a flat extension over k[t]/(t3) is [EJ, 81 ~H~(Der.d)= 

T2(A). That is, we need a representative p1 of 8 for which there is a p2 with 

dp,+p,d+p,p, =O. (Notice plpl =+[p,,pl].) More generally, the obstruction to 

extending a flat deformation over k[t]/(t”) to one over k[t]/(t”+‘) is a higher 

order Massey bracket [e, . . . , 01 also lying in a quotient of T2(A). (Compare Ni- 

jenhuis [8] who has this except for the Massey bracket terminology.) 

Massey brackets. The homology of any d.g. Lie algebra (L, d) has a system of 
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higher order operations called Massey brackets, or rather two systems: general ones 

of n variables [e,, . . . , tl,,] and restricted ones of a single variable [0, . . . ,8]. We are 

interested only in the single variable system which is defined as follows: 

For q odd and BE Hq(L), the Massey triple bracket [Q, 8, a] is defined as a coset 

of H3q- l(L) if [t9, 01 = 0 as follows: Let p E Lq be a cycle in 8. Since 

[e, 0]= 0 E H2q(L), there is b E L2qP ’ such that db = [p,p]. The Massey bracket is 

the set of homology classes of all the cycles of the form [p, b] which is a coset mod 

[e, H2q- ’ (L)]. 
The generalization to higher order is formal but straight-forward. The n-fold 

Massey bracket [e, . . . , 01 is 

(1) defined if there exist pie LicqP I)” such that p, represents 6’ and 

Ci+,_k [p;~pjl=dp,+P,d for 2sk<n, and 
(2) represented by C,+,=n [p;,pj] for all choices of pj satisfying (1). 

Of course our choice of notation has been rigged so that for L = Der .d and q = 1, 

d+p, + . . . +pn_ , determines a flat deformation of A over k[t]/(t”) and the n-fold 

bracket [O, . . . , f?] contains zero if and only if A can be extended to a flat deformation 

over k[t]/(t”+‘). A s usual with higher order operations, we are not attempting to 

extend a fixed deformation over k[t]/(t”) to one over k[t]/(t”“). 

Remark. At the computational level, much of this can be carried out using ordinary 

projective (not multiplicative) resolutions, but the structures are somewhat 

obscured. 

5. The tangent Lie algebra and deformation theory 

Formal deformation theory can be described in terms of Der.& for any 

multiplicative resolution .-z’+ A, but it’s often helpful to choose a special resolution, 

small for computations, large for theoretical comparisons. In particular, we can 

relate Der .z/rA to the tangent Lie algebra: sLA # Der TA. 

Theorem. For any connected d.g. Lie coalgebra r, there is a map of d.g. Lie 
algebras 

a : sL # Der T-t Der .GY~ where L = Hom(T, k) 

which induces an isomorphism in homology (i.e. a is a weak homotopy equivalence 
of d.g. Lie algebras). Moreover a : sLA # Der TA + Der.drA is a natural transfor- 
mation of functors of c.d.g.a. ‘s. 

Construction of a for T=TA. Since .dTA is augmented (in fact, connected), we 

again have 

Der .drA # Hom(srA, &TA) = Hom(srA, k) @ Hom(SrA, &A). 
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On the other hand, DerTA =Hom(TA,A) maps naturally into Hom(sfA,JrA). 

The splitting used depends only on the augmentation of &, so we obtain (x, natural 

with respect to maps of augmented d.g. algebras. It is tedious but straightforward 

to check that a is a map of d.g. Lie algebras. 

That (x induces a homology isomorphism follows from the isomorphism of 

sLA # Der TA with Harrison’s complex Hom(TA, A) and the homology isomor- 

phism with Hom(TA, .drA) = Der .-JTA induced by the resolution .diTA --t A. 

Corollary. Let A be an augmented commutative algebra. Harrison and Quillen 
cohomologies agree for coefficients in any A-module M. 

With general coefficient A-module M, Harrison’s cohomology is that of 

Hom(TA, M) and Quillen’s is that of Der(.dTA, M) so the equivalence is 

straightforward. (An alternate approach to the comparison of Harrison cohomology 

with Der .d for a ‘resolvent’ .d is given by Palamodov in the analytic setting over Cc, 

based on ideas of Tjurina [9].) 

In summary, the deformation theory of A can be described invariantly in terms of 

T(A) = H(Der &rA) = H(sLA # Der TA); 

the advantage of the last complex is its size compared to Der.dTA and its d.g. Lie 
structure compared to Hom(TA, A). This has proved computationally useful both 

in rational homotopy theory [12] and for special algebras, e.g. the ‘thick 

point’A=k[xi,..., X,]/(X;Xj, 1~ i<j< n), the trivial algebra whose maximal ideal 

m=(x,,..., x,) has square zero. The Lie coalgebra TA is then free with d= 0. If 
n > 1, then sLA # Der TA has the same homology as Der TA/adTA which has trivial 

differential, thus 

T(A) = Der L/ad L 

where L is the free Lie algebra on n variables (passing to the dual L = Hom(TA, k)). 

Now, every finite-dimensional k-algebra specializes to the trivial algebra A, by let- 

ting the multiplication degenerate. Thus the deformations of A consist of all com- 

mutative associative unitary multiplications on a vector space of dimension n + 1, 

which is easily seen to be the set of degree 1 elements in SL # Der L = Der L/ad L 
which satisfy the equation [6,@ = 0. In other words, the base ring B of the so- 

called (mini) versa1 deformation of A is described symbolically as Spec B= 
{ 13 E Der’L/ad L : [0,0] = 0). (In other words, B is the quotient of the polynomial 

algebra on dim(Der’L/ad L) variables satisfying the indicated homogeneous 

quadratic equations.) In a similar way, augmented algebras of dimension n + 1 cor- 

respond to 0 E Der’L satisfying [e, 6]= 0, and the mini-versa1 deformation ring E 
for augmented deformations of A is given by SpecE = {BE Der’L: [8,0] = O}. 

The flat map B + E of rings, whose fibre E/me,E = A, is the mini-versa1 deforma- 

tion of A. Notice that Zariski tangent spaces (m&n~)* and (m,/r&)* are respec- 

tively isomorphic to T’(A) = Der L/adL and Der’ L. Note B (resp E) is not regular 
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if n >2 (resp. 1): Their respective obstruction spaces [M, M] (A4= Der’L/ad L, 

resp. D&L) are not zero; however, in both cases cubic and higher order Massey- 

products vanish. 

This example generalizes as follows. Given the augmented algebra A, we seek a 

flap map B + E of augmented algebras, with special fibre E/mBE =A (i.e. a ‘defor- 

mation’ of A which is ‘versal’ in the sense that it induces any other deformation 

B’+ E’ of A by a change of base ‘classifying’ morphism B-t B’. As it turns out, 

E + E@, E will then have a similar property for augmented deformations of A, 

i.e. pointed deformations of SpecA.) Assuming, for convenience, that A is a finite- 

dimensional k-module, let L be Hom(TA, k), or any other Lie algebra model for A. 

We can then give a uniform description of the rings R =A, B, E respectively as 

where A4 is respectively L, Der L/ad L-sL#DerL and DerL. In particular 

Der L/ad L and Der L are (non-free) Lie algebra models for B and E. Notice B + E 

is not mini versa1 (the dimension of MB/M; is not the minimal possible one, name- 

ly dim T’(A)), unless it happens that the differential in the tangent algebra 

Der L/ad L is zero, a condition called formality in the setting of rational homotopy 

theory. In this case, the cubic and higher order Massey product obstructions to the 

deformation of A vanish. In general this B -+ E may be thought of as a maximal ver- 

sal deformation of A, in that the defining equations are (inhomogeneous) quadratic. 

Thus, tangent cohomology T(A) may be computed in either of two ways 

T(A) = H(Der up/) = H(Der L/ad L) as the cohomology of a d.g. Lie algebra, where 

.d (resp L) is an algebra (resp. Lie algebra) model for A. Whereas the cohomology 

T’(A) yields infinitesimal automorphisms (i = 0), deformations (i = l), and defor- 

mation obstructions (i = 2) of A, knowledge of the Lie algebra itself will yield a ver- 

sal deformation of A. 

We note that in case A is graded, the higher cohomology T’(A) may be inter- 

preted topologically. If F is the formal topological space whose cohomology is A, 

then up to rational homotopy type, L is a Lie algebra model for F. It then follows 

[12] that the classifying space B(Aut F), the base space for the universal topological 

fibration with fibre F, has a Lie algebra model consisting of the non-positively grad- 

ed part of either of the tangent Lie algebras Der.d- DerL/ad L. It follows that the 

non-positively graded part of T’(A) may be identified with the rational homotopy 

~*(F)OQ. 
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